Table 2. Interatomic distances and angles for euchroite

Within the $\mathrm{Cu}(1)$ polyhedron			Within the $\mathrm{Cu}(2)$ polyhedron		
	(F)	(G)		(F)	(G)
$\mathrm{Cu}(1)-\mathrm{O}(4)$	1.983	$1 \cdot 92$	$\mathrm{Cu}(2)-\mathrm{O}(1)$	1.946	1.99
-O(5)	1.963	2.08	-O(2)	2.795	2.74
-O(6)	2.365	$2 \cdot 42$	-O(3)	1.958	1.97
-O(6')	2.479	2.51	-O(4)	2.397	$2 \cdot 47$
-O(7)	1.943	1.96	-O(5)	1.989	1.92
$-\mathrm{O}\left(7^{\prime}\right)$	2.044	2.01	-O(7)	2.008	2.01
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$89.5{ }^{\circ}$	90°	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(2)$	$84.5{ }^{\circ}$	86°
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}\left(6^{\prime}\right)$	$93 \cdot 1$	93	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(3)$	$93 \cdot 9$	93
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(7)$	$86 \cdot 2$	88	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(4)$	$98 \cdot 6$	98
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}\left(7^{\prime}\right)$	$97 \cdot 1$	96	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(5)$	$92 \cdot 1$	90
$\mathrm{O}(5)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$86 \cdot 9$	88	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(3)$	$87 \cdot 1$	87
$\mathrm{O}(5)-\mathrm{Cu}(1)-\mathrm{O}\left(6^{\prime}\right)$	$90 \cdot 3$	89	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(5)$	82.4	79
$\mathrm{O}(5)-\mathrm{Cu}(1)-\mathrm{O}(7)$	$95 \cdot 5$	96	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(7)$	$102 \cdot 6$	102
$\mathrm{O}(5)-\mathrm{Cu}(1)-\mathrm{O}\left(7^{\prime}\right)$	81.6	80	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(4)$	92.2	94
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}(7)$	$95 \cdot 0$	95	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(7)$	93.6	95
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}\left(7^{\prime}\right)$	89.8	90	$\mathrm{O}(4)-\mathrm{Cu}(2)-\mathrm{O}(5)$	$74 \cdot 4$	73
$\mathrm{O}\left(6^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{O}(7)$	89.0	89	$\mathrm{O}(5)-\mathrm{Cu}(2)-\mathrm{O}(7)$	81.8	84
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(5)$	$176 \cdot 2$	-	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(7)$	$170 \cdot 0$	-
$\mathrm{O}(6)-\mathrm{Cu}(1)-\mathrm{O}\left(6^{\prime}\right)$	$175 \cdot 3$	-	$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(4)$	176.9	-
$\mathrm{O}(7)-\mathrm{Cu}(1)-\mathrm{O}\left(7^{\prime}\right)$	$174 \cdot 2$	-	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(5)$	$167 \cdot 3$	-
Within the arsenate tetrahedron					
As-O(3)	1.680	1.68	$\mathrm{O}(3)-\mathrm{As}-\mathrm{O}(4)$	104.8°	103°
-O(4)	1.664	1.65	$\mathrm{O}(3)-\mathrm{As}-\mathrm{O}(5)$	$109 \cdot 3$	111
-O(5)	1.773	1.73	$\mathrm{O}(3)-\mathrm{As}-\mathrm{O}(8)$	$110 \cdot 1$	112
-O(8)	1.615	1.61	$\mathrm{O}(4)-\mathrm{As}-\mathrm{O}(5)$	109.9	109
			$\mathrm{O}(4)-\mathrm{As}-\mathrm{O}(8)$	$114 \cdot 4$	116
Hydrogen bond distances			$\mathrm{O}(5)-\mathrm{As}-\mathrm{O}(8)$	108.3	105
$\mathrm{O}(1)-\mathrm{O}(6)$	3.052	2.95			
$\mathrm{O}(1)-\mathrm{O}(8)$	2.583	2.61			
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(8)$	2.834	2.77			
$\mathrm{O}(2)-\mathrm{O}(6)$	2.753	$2 \cdot 94$			
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(6)$	2.882	2.70			
$\mathrm{O}(7)-\mathrm{O}(8)$	2.585	$2 \cdot 63$			
$\mathrm{O}(2)-\mathrm{O}(5)$	2.918	$2 \cdot 96$			

The average standard deviations of the bond lengths for this refinement are: $\mathrm{Cu}-\mathrm{O} 0.012$; As-O 0.012 . That of the angles is 0.50°.
molecules. The difference in birefringence may be partly caused by the rotation of the structural unit into a plane parallel to (010) in euchroite.

It has been stated (Palache, Berman \& Frondel, 1951) that euchroite possesses a $\{110\}$ and $\{101\}$ cleavage in traces. Fig. 1 shows the hypothesized $\{110\}$ cleavage developed by breaking hydrogen bonds between $O(1)$ and $O(8)$ and between $O(7)$ and $O(8)$. Also one stronger bond need be broken between $\mathrm{Cu}(2)$ and $\mathrm{O}(3)$. The $\{101\}$ cleavage cannot be accounted for in any simple manner.

The author wishes to thank Dr L. G. Berry for the crystals of euchroite. R.P.Sage collected the molybdenum data. The Colorado School of Mines Foundation, Inc. grant 6402 provided the author with funds for the completion of this
work. Especial thanks are due the University of Colorado Computing Center for computing time and technical assistance.

References

Berry, L. G. (1951). Amer. Min. 36, 496.
Cromer, D. T., Larson, A. C. \& Waber, J. T. (1963). Los Alamos Scientific Laboratory Report LA-2987.
Giuseppetti, G. (1963). Period. Mineral. 32, 131.
Heritsch, H. (1938). Z. Kristallogr. 99, 466.
Heritsch, H. (1940). Z. Kristallogr. 102, 1.
Palache, C., Berman, H. \& Frondel, C. (1951). Dana's System of Mineralogy, Vol. II, p.934. New York: John Wiley.
Walitzi, E. M. (1963). Miner. Petrog. Mitt. 8, 614.

Acta Cryst. (1966). 21, 440
The similarity of atomic radius of palladium (II) and palladium (IV). By J.D.Bell, D. Hall and T. N. Waters,
Chemistry Department, University of Auckland, New Zealand
(Received 28 February 1966)

A number of apparently trivalent complexes of palladium and platinum have been investigated crystallographically (Brosset, 1948; Cohen \& Hughes, 1954; Hall \& Williams,

1958; Craven \& Hall, 1961, 1966; Ryan \& Rundle, 1961 ; Wallen, Brosset \& Vannerberg, 1962), and invariably the structures have proved to be based on chains in which
divalent and tetravalent atoms alternate, e.g. $\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{3}$ is in fact $\mathrm{Pd}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2} . \mathrm{Pd}^{\mathrm{IV}}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}$, with structure

In practice, however, the diffraction patterns show evidence of disorder, the stacking of chains being susceptible to mistakes which involve their translation by one half the repeat distance in the chain direction. It has been supposed that this is possible because the dimensions of the complex ions are essentially the same, irrespective of the valence state of the central metal, and this view is supported by the atomic radii listed by Pauling (1960). Nonetheless there does not appear to be any instance in which bond lengths have been measured in comparable compounds with sufficient precision to make such an assertion, and for this reason the well established structures of ammonium chloropalladate(II) and ammonium chloropalladate(IV) have been re-examined.

Ammonium chloropalladate (II)

Crystals of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PdCl}_{4}$ were grown as fine bronze tetragonal needles which were strongly pleochroic. Cell dimensions were determined from Weissenberg photographs by the method of Main \& Woolfson (1963) as $a=7 \cdot 205 \pm$ $0.006, c=4.26 \pm 0.02 \AA$, in agreement with the values previ-
ously reported by Dickinson (1922). The density was measured by flotation as $2 \cdot 1 \mathrm{~g} . \mathrm{cm}^{-3}$, and the calculated value for one molecule per unit cell is $2 \cdot 14$. Intensities were measured visually from Weissenberg photographs, taken with $\mathrm{Cu} K \alpha$ radiation, for the layers $h k 0-h k 3$. The crystals used were of square section, and cylindrical absorption corrections were applied. The $h 0 l$ layer was also photographed, using a crystal which had been cut to an approximate cube. It did not, however, prove possible to obtain such a crystal that was not multiple, and the $h 0 l$ data were used to correlate the layers about a, but were otherwise excluded from the refinement.

The structure was confirmed as that previously described (Dickinson, 1922) i.e. as in $P 4 / m m m$, with palladium in (a), $0,0,0$; nitrogen in (e), $0, \frac{1}{2}, \frac{1}{2}$; and chlorine in $(j), x, x, 0$, with $x \sim 0 \cdot 23$. The chlorine parameter x, anisotropic thermal parameters for palladium and chlorine, and an isotropic thermal parameter for nitrogen, were then refined by a block-diagonal least-squares procedure. Scattering curves assumed were those of Thomas \& Umeda (1957) for palladium and those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal (1955) for chlorine and nitrogen. Real corrections for dispersion were made to the palladium and chlorine values. The weighting system was similar to the Hughes scheme except that terms for very small $F_{\text {obs }}$ were further downweighted. Thirteen terms which appeared to be affected by extinction were removed from the data. The final R index for the 118 independent terms included was 0.073 . The final values for the parameters are listed in Table 1 and observed and calculated

Table 1. Atomic parameters

Ammonium chloropalladate(II)							
	x	y	z	b_{11}	b_{12}	b_{33}	B
Pd	0	0	0	$0 \cdot 00523$	-	0.02868	
Cl	0.2257	$0 \cdot 2257$	0	$0 \cdot 01212$	-0.00543	0.06072	
N	0	$\frac{1}{2}$	$\frac{1}{2}$				$4 \cdot 28$
Ammonium chloropalladate(IV)							
Pd	0	0	0				0.413
Cl	0.2337	0	0	$0 \cdot 00254$	-	$0 \cdot 00516$	
N	,	$\frac{1}{4}$					$2 \cdot 47$

Table 2. Observed and calculated structure factors $(\times 2.5)$
Values marked with an asterisk were assumed to be affected by extinction. The table gives, reading from left to right, h, k, l, F_{o}, F_{c}.

Ammonium chloropalladate (II)

1	1	-	963	1238	6	40	421	481	3	3	1370	4413	8	1	1	700	636	5	2	2	261	299	2	2	3	1415	1337
2	0	0	148	-115	6	50	357	355	4	01	1660*	1923	8	2	1	397	401	5	3	2	495	502	3	0	3	551	479
2	1	0	1096	1204	6	60	839	725	4	11	1254	1253	8	3	1	485	433	5	4		980	1029	3	1	3	941	828
2	2	0	1811*	3348	7	10	611	599	4	31	665	577	8	4	1	548	556	5	5	2	910	71	3	2	3	1069	1023
3	0	0	620	599	7	0	1101	1246	4	41	1211	1328	9	0	1	714	870	6	0	2	406	394	3	3	3	914	860
3	1	0	982	966	7	30	919	321	5	01	1600	1636	9	1	1	454	571	6	1	2	666	633	4	0	3	1096	1146
3	2	0	1477	1890	8	0	949	843	5	1	1174	1145	1	0	2	979*	1409	6	2	2	1131	:069	4	1	3	821	790
3	3	0	1135	1158	8	0	812	666	5	21	316	306	1		2	898	969	6	3	2	852	827	4	3	3	434	435
4	\bigcirc	0	1945*	2491	8	20	542	483	5	31	764	727	2	-	2	254	161	6	4	2	433	420	4	4	3	904	847
4	1	0	1262	1342	8	3 c	488	4.8	5	41	114.	1224	2	1	2	875°	935	6	5	2	222	324	5	0	3	1 C 15	1004
4	2	0	354	339	8	40	665	633	5	51	1 C 74	1005	2	2	2	1752*	2226	6	6	-	54.5	596	5	1	3	736	733
4	3	0	595	598		0	894	920	6	01	339	266	3	,	2	578	565	7	,	2	558	509	5	2	3	275	285
4	4	0	$1416 *$	1612	9	10	545	550	6	11	748	725	3	1	2	765	810	7	2	2	1052	991	5	3	3	569	508
5	c	\bigcirc	1624°	1752	1	1	1078**	1873	6	21	1171	1136	3	2	2	${ }^{1240 *}$	1392	7	3	2	722	675	5	4	3	776	78.4
5	1	c	1 C 20	964	1	11	1354°	1924	6	31	338	971	3	3	2	958	928	7	5	2	155	266	5	5	3	660	662
5	2	0	256	304	2	01	787	-690	6	1	329	347	4		2.	1584*	1797	8	0	2	740	694	6	1	3	559	509
5	3	0	552	576	2	11	$1{ }^{1} 4$	1120	6	61	777	633	4		2	939	1039	8	1	2	459	557	6	2	3	770	737
5	4	0	1119	1299	2	21	1525*	24.5	7	1	734	678	4	2	2	354	334	8	2	2	388	417	6	3	3	613	64.4
5	5	0	975	951	3	01	685	598	7	21	1203	1176	4	3	2	549	513	8	3	2	323	389	6	4	3	225	303
6	0	0	4.4	439	3	11	1275	1400	7	3.1	980	864	4	8	2	. 1214	1256	1	c	3	866	1003	7	1	3	453	478
6	1	0	783	760	3	21	1539	1740	7	5 '1	315	335	5	0	2	1274	13,49	1	1	3	1049	1001	7	2	3	696	
6	2	0	126.	1355					8	01	821	731	5	1	2	812	791	2	1	3	834	719	7	3	3	492	578
6	3	0	945	1 C 26																							

Ammonium chloropalladate (IV)

c 2	0	3461	4954	6		c	3015	2967	6	8	0	3684	3141	12	2	0	1605	1528	5	3	1	2756	2806	9	1	1	2194	2787
2	0	1905	134, 2	6	6	0	1525	1420	10	0	0	2313	2462	12	4.	0	3247	2541	5	5	1	3465	3392	9	3	1	2312	2342
40	-	5691	8303	8	0	0	3127	4929	10	2	0	1299	1334	1	1	1	2666	4178	7	1	1	1203	1564		5	1	2945	2718
42	0	3127	3735	8	2	-	2274	2470	10	4	0	234.5	2234	3	1	1	$2 ? 69$	2797	7	3	1	1118	1094	9	7	1	1780	1666
44	c	54.63	6950	8	4	0	4350	4370	10	6	0	1221	1241	3	3	1	1549	1872	7	5	1	2037	1774	11	1	1	887	388
60	0	2538	2398	\bigcirc	6	c	2592	2164	12	0	0	2820	2806	5	1	1	2:15	3620	7	7	1	819	672	11	5	1	922	1075
62	c	1512	: 603																									

structure factors are listed in Table 2. The palladiumchlorine bond length is $2.299 \AA$, with $\sigma=0.004 \AA$. This estimate of error allows for uncertainty in both atomic parameter and cell dimension.

Ammonium chloropalladate(IV)

Crystals of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PdCl}_{6}$ were obtained, following Sharpe (1953), as small wine-red octahedra. The axial length of the cubic cell was determined from a calibrated rotation photograph as $9.84 \pm 0.01 \AA$, in agreement with Sharpe (1953). The density has been measured as $2.48 \mathrm{~g} . \mathrm{cm}^{-3}$ (Ketelaar \& von Walsem, 1938), and the calculated volume for 4 molecules per cell is $2 \cdot 476$. All crystals comprised several individuals giving rise to multiple spots, and the most suitable that could be found was one for which the separate reflexions coincided over half of the Weissenberg film, at least when the equi-inclination angle was very small. Intensities were measured visually from such spots for the layers $h k 0$ and $h k 1$. Spherical absorption corrections were applied.

This structure was also confirmed as previously described (Ketelaar \& von Walsem, 1938), i.e. as in Fm3m with palladium in (a), $0,0,0$; nitrogen in (c), $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$; and chlorine in (e), $x, 0,0$, with $x \sim 0 \cdot 23$. Refinement was then as before, except that only the chlorine could adopt anisotropic thermal parameters, and separate scale factors were used for the $h k 0$ and $h k 1$ data. Eight terms appeared to suffer from extinction and were removed. The R index for the 29 terms included was $0 \cdot 071$. The final parameters are listed in Table 1 , and observed and calculated structure factors in Table 2.

The palladium-chlorine bond length is $2.300 \AA$, with $\sigma=0.007 \AA$.

The assumption that $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{IV})$ have effectively the same atomic radius has thus been confirmed.

We are indebted to the Research Committee of the New Zealand University Grants Committee for financial assistance.

References

Berghuis, J., HaAnappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A. L. (1955). Acta Cryst. 8, 478.
Brosset, C. (1948). Ark. Kemi Min. Geol. A, 25, 1.
Cohen, A. \& Hughes, E. W. (1954). Structure Reports, 18, 538.

Craven, B. M. \& Hall, D. (1961). Acta Cryst. 14, 475.
Craven, B. M. \& Hall, D. (1966). Acta Cryst. 21, 177.
Dickinson, R. G. (1922). J. Amer. Chem. Soc. 44, 2404.
Hall, D. \& Williams, P. P. (1958). Acta Cryst. 11, 624.
Ketelaar, J. A. \& van Walsem, J. F. (1938). Rec. Trav. chim. Pays-Bas, 57, 964.
Main, P. \& Woolfson, M. M. (1963). Acta Cryst. 16, 731.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd Ed. Ithaca: Cornell Univ. Press.
Ryan, T. D. \& Rundle, R. E. (1961). J. Amer. Chem. Soc. 83, 2814.
Sharpe, A. G. (1953). J. Chem. Soc. p. 4177.
Thomas, L. A. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.
Wallen, J., Brosset, C. \& Vannerberg, N. (1962). Ark. Kemi, 18, 541.

Acta Cryst. (1966). 21, 442
Further refinement of the crystal structure of acetanilide. By C. J. Brown, The Sir William Ramsay and Ralph
Forster Laboratories, University College, Gower Street, London, W.C.1, England
(Received 29 March 1966)

As a result of a number of requests the crystal structure of acetanilide (Brown \& Corbridge, 1954) has been further refined. The original X-ray intensity data were used and Cruickshank's (1961) program was used for refining the positional and anisotropic thermal parameters on a Pegasus computer. Seven cycles of structure factors and least squares reduced R from 11.2% to 5.9% taken over the 1125 observed $F(h k l)$. The structure amplitude agreement is given in Table 1, the new atomic parameters in Table 2, and the bond lengths and inter-bond angles in Table 3.

The equation of the mean plane through the benzene ring is

$$
0.2049 X-0.5482 Y-0.8108 Z=0.4229
$$

from which the atoms are displaced by $\mathrm{C}(1)-0.014 ; \mathrm{C}(2)$ $+0.009 ; C(3)+0.001 ; C(4)-0.010 ; C(5) 0 ; C(6)+0.013 \AA$. The nitrogen atom is $-0.046 \AA$ out of this plane so that the $\mathrm{C}-\mathrm{N}$ bond makes an angle of 1.9° with the plane of the ring.

The equation of the mean plane containing $C(7), C(8)$, N and O is

$$
0.3689 X-0.2990 Y-0.8801 Z=1.8978
$$

from which the atoms are displaced by $\mathrm{C}(7)+0.002 ; \mathrm{C}(8)$ $0 ; \mathrm{N}-0.001$; and $\mathrm{O}-0.001 \AA$. The normals to these two planes are inclined at 17.6°; the value of $37^{\circ} 54^{\prime}$ given in the previous paper was wrong.

The hydrogen bond, assumed to be linear, makes angles of 110.2° with the $\mathrm{N}-\mathrm{C}(1)$ bond, 121.9° with $\mathrm{N}-\mathrm{C}(7)$, and $139 \cdot 1^{\circ}$ with $\mathrm{O}^{\prime}-\mathrm{C}\left(7^{\prime}\right)$.

The results of this further refinement seem to indicate an improvement in overall regularity of the molecule; the benzene ring is more nearly regular and more planar; the acetyl group is now planar, and the mean standard deviation of a bond has been reduced from 0.0056 to $0.0034 \AA$. There is no change in the conformation of the molecule; the mean change in non-hydrogen positional coordinates is only $0.012 \AA$. This is of interest since in the structure of N methylacetanilide (Pedersen \& Pedersen, 1965) the C(8) and O atoms have changed places, together with other differences in molecular geometry. Presumably this exo configuration is the more stable one when the oxygen atom does not have to be forced into the endo configuration to accept a hydrogen bond.

